1 # coding=utf-8 2 import keras 3 import theano 4 from theano import configparser 5 import numpy as np 6 np.random.seed(123) 7 import mkl 8 from keras.models import Sequential 9 from keras.layers import Dense, Activation 10 from keras.optimizers import SGD 11 12 dataMat1 = [] 13 labelMat1 = [] 14 dataMat2 = [] 15 labelMat2 = [] 16 fr1 = open(r'F:\train1.txt') 17 fr2 = open(r'F:\test1.txt') 18 for line in fr1.readlines(): 19 lineArr = line.strip().split() 20 dataMat1.append([(lineArr[0]),(lineArr[1]),(lineArr[2])]) 21 labelMat1.append((lineArr[3])) 22 for line in fr2.readlines(): 23 lineArr = line.strip().split() 24 dataMat2.append([(lineArr[0]),(lineArr[1]),(lineArr[2])]) 25 labelMat2.append((lineArr[3])) 26 27 dataMat1=list(dataMat1) 28 labelMat1=list(labelMat1) 29 dataMat2=list(dataMat2) 30 labelMat2=list(labelMat2) 31 32 dataMat1=map(str,dataMat1) 33 labelMat1=map(str,labelMat1) 34 dataMat2=map(str,dataMat2) 35 labelMat2=map(str,labelMat2) 36 37 dataMat1=np.array(dataMat1) 38 labelMat1=np.array(labelMat1) 39 dataMat2=np.array(dataMat2) 40 labelMat2=np.array(labelMat2) 41 42 X_train, Y_train = dataMat1, labelMat1 43 X_test, Y_test =dataMat2, labelMat2 44 45 46 model = Sequential() 47 model.add(Dense(3, input_dim=3)) 48 model.add(Dense(1, output_dim=1,activation='relu')) 49 50 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) 51 model.compile(loss='mse', optimizer='sgd') 52 53 print ("Training",'\r\n') 54 cost = model.fit(X_train, Y_train, nb_epoch=70, batch_size=10) 55 print('cost:',cost) 56 57 print ("Testing",'\r\n') 58 cost = model.evaluate(X_test, Y_test , batch_size=3) 59 print ('test loss: ', cost,'\r\n') 60 61 W, b = model.layers[1].get_weights() 62 print ('Weights:', W,'\r\n') 63 print ('Biases:' , b,'\r\n')