现在有一个matlab函数,写好的,我用c#也能调用了,但是他这个函数的参数我看不懂,也不知道该怎么传,不懂数学,我把matlab文件发上来,懂得朋友帮我解释下各参数该怎么传,我现在只能传x坐标数组和y坐标数组,他会自动寻峰,但是灵敏度太低,应该还是默认参数的问题,后面几个参数不知道该怎么传,有英文说明
function [P,DetectionParameters]=autofindpeaks(x,y,SlopeThreshold,AmpThreshold,smoothwidth,peakgroup,smoothtype) % autofindpeaks(x,y,SlopeThreshold,AmpThreshold,smoothwidth,peakgroup,smoothtype) % Automatic peak finder that locates and measures the positive peaks in a % noisy x-y time series data. similar to findpeaksG or findpeaskSG except % that the peak detection parameters SlopeThreshold, AmpThreshold, % smoothwidth, peakgroup, smoothtype can be omitted and the function will % calculate trial values based on the number of data points and/or the % optional peak density (the last of 3 arguments after x and y). Returns a % table (P) of peak number, position, absolute peak height, peak-valley % difference, perpendicular drop area, and tangent skim area of each peak. % Detects peaks by looking for downward zero-crossings in the first % derivative whose upward slopes exceed SlopeThreshold. If Peakgroup=0 the % local maximum is taken as the peak height and position. For best results, % remove the background from the data before using this function. Optional % input arguments "slopeThreshold", "ampThreshold" and "smoothwidth" % control peak sensitivity of each segment. Higher values will neglect % smaller features. "Smoothwidth" is a vector of the widths of the smooths % applied before peak detection; larger values ignore narrow peaks. If % smoothwidth=0, no smoothing is performed. "Peakgroup" is a vector of the % number points around the top part of the peak that are taken for % measurement. The argument "smoothtype" determines the smooth algorithm: % If smoothtype=1, rectangular (sliding-average or boxcar) If % smoothtype=2, triangular (2 passes of sliding-average) If smoothtype=3, % pseudo-Gaussian (3 passes of sliding-average) % Run testautopeaks.m to test and demonstrate this function. % In version 1.1, [P,DetectionParameters]=autofindpeaks...also returns the % peak detection parameters as a 4-element row vector. % See http://terpconnect.umd.edu/~toh/spectrum/Smoothing.html and % http://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm % (c) T.C. O'Haver, 2016. Version 1.1, February, 2017 % % The script testautofindpeaks.m runs all the examples below, additionally % plotting the data and numbering the peaks (like autofindpeaksplot.m) % % Example 1: One input argument; data in single vector % x=[0:.01:5];y=sin(10*x);autofindpeaks(y); % % Example 2: One input argument; data in two columns of a matrix % x=[0:.01:5]';y=x.*sin(x.^2).^2;M=[x y];autofindpeaks(M); % % Example 3: Two input arguments; data in separate x and y vectors % x=[0:.1:100];y=(x.*sin(x)).^2;autofindpeaks(x,y); % or x=[0:.005:2];y=humps(x);P=autofindpeaks(x,y) % % Example 4: Additional input argument (after the x,y data) to control % peak sensitivity; higher numbers for more peaks: % x=[0:.1:10];y=5+5.*sin(x)+randn(size(x));autofindpeaks(x,y,3); % or x=[0:.1:100];y=5+5.*cos(x)+randn(size(x));autofindpeaks(x,y,10); % or x=[0:.1:1000];y=5+5.*cos(x)+randn(size(x));autofindpeaks(x,y,100) % % Example 5: Seven input arguments. Specify all peak detections parameters % x=1:.2:100; % y=gaussian(x,40,10)+gaussian(x,50,10)+.01.*randn(size(x)); % autofindpeaks(x,y,0.00026015,0.031007,19,21,3) % % Example 6: Seven input arguments. Specify all peak detections parameters, in % this case using vectors to optimize for peaks with very different widths. % x=1:.2:100; % y=gaussian(x,20,1.5)+gaussian(x,80,30)+.02.*randn(size(x)); % plot(x,y,'c.') % P=autofindpeaks(x,y,[0.001 .0001],[.2 .2],[5 10],[10 100],3) % text(P(:,2),P(:,3),num2str(P(:,1))) % disp(' ') % disp(' peak # Position Height Width Area') % disp(P) % % Example 7: Find, measure, and plot noisy peaks with unknown positions % x=-50:.2:50; % y=exp(-(x).^2)+exp(-(x+50*rand()).^2)+.02.*randn(size(x)); % plot(x,y,'m.') % P=autofindpeaks(x,y); % text(P(:,2),P(:,3),num2str(P(:,1))) % disp(' peak # Position Height Width Area') % disp(P) % % Note: You can pass the detection parameters found by autofindpeaks to % other functions, such as measurepeaks. For example: % x=[0:.1:50];y=5+5.*sin(x)+randn(size(x));[P,A]=autofindpeaks(x,y,3); % P=measurepeaks(x,y,A(1),A(2),A(3),A(4),1); % % Related functions: % autofindpeaksplot.m, findpeaksG.m, findvalleys.m, findpeaksL.m, % findpeaksb.m, findpeaksb3.m, findpeaksplot.m, peakstats.m, findpeakSNR.m, % findpeaksGSS.m, findpeaksSG, findpeaksLSS.m, findpeaksfit.m, findsteps.m, % findsquarepulse.m, idpeaks.m, measurepeaks.m % Copyright (c) 2017 Thomas C. O'Haver % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN % THE SOFTWARE. % switch nargin % 'nargin' is the number of input arguments case 1 % One argument only % Assumne that the argument must be a matrix of data. % If DataMatrix is in the wrong transposition, fix it. datasize=size(x); if datasize(1)<datasize(2),x=x';end datasize=size(x); if datasize(2)==1, % Must be ipeak(y-vector) y=x; x=[1:length(x)]'; % Create an independent variable vector else % Must be ipeak(DataMatrix) y=x(:,2); x=x(:,1); % Split matrix argument end % Calculate default values of peak detection parameters PeakDensity=20; % Estimate approx number of points in a peak half-width WidthPoints=length(y)/PeakDensity; SlopeThreshold=WidthPoints^-2; AmpThreshold=abs(min(y)+0.5*(max(y)-min(y))); smoothwidth=10; peakgroup=10; if peakgroup>100,peakgroup=100;end % Keep peakgroup below 100 if smoothwidth>100,smoothwidth=100;end % Keep smoothwidth below 100 smoothtype=3; disp('Input arguments for findpeaks.... functions: ' ) disp(['(x,y,' num2str(SlopeThreshold) ',' num2str(AmpThreshold) ',' num2str(smoothwidth) ',' num2str(peakgroup) ',3)'] ) DetectionParameters=[SlopeThreshold AmpThreshold smoothwidth peakgroup]; case 2 PeakDensity=20; % Estimate approx number of points in a peak half-width WidthPoints=length(y)/PeakDensity; SlopeThreshold=WidthPoints^-2; AmpThreshold=abs(min(y)+0.1*(max(y)-min(y))); smoothwidth=round(WidthPoints/3); peakgroup=round(WidthPoints/3); if peakgroup>100,peakgroup=100;end % Keep peakgroup below 100 if smoothwidth>100,smoothwidth=100;end % Keep smoothwidth below 100 smoothtype=3; disp('Input arguments for findpeaks.... functions: ' ) disp(['(x,y,' num2str(SlopeThreshold) ',' num2str(AmpThreshold) ',' num2str(smoothwidth) ',' num2str(peakgroup) ',3)'] ) DetectionParameters=[SlopeThreshold AmpThreshold smoothwidth peakgroup]; case 3 % Must be separate x and y data vectors plus a peak density % estimate. % Calculate values of peak detection parameters % arguments based on the peak density, PeakD PeakDensity=SlopeThreshold; % Estimate approx number of points in a peak half-width WidthPoints=length(y)/PeakDensity; SlopeThreshold=WidthPoints^-2; AmpThreshold=abs(min(y)+0.02*(max(y)-min(y))); smoothwidth=round(WidthPoints/3); peakgroup=round(WidthPoints/3); if peakgroup>100,peakgroup=100;end % Keep peakgroup below 100 if smoothwidth>100,smoothwidth=100;end % Keep smoothwidth below 100 smoothtype=3; disp('Input arguments for findpeaks.... functions: ' ) disp(['(x,y,' num2str(SlopeThreshold) ',' num2str(AmpThreshold) ',' num2str(smoothwidth) ',' num2str(peakgroup) ',3)'] ) DetectionParameters=[SlopeThreshold AmpThreshold smoothwidth peakgroup]; end if smoothtype>3;smoothtype=3;end if smoothtype<1;smoothtype=1;end if smoothwidth<1;smoothwidth=1;end if isscalar(AmpThreshold),AmpThreshold=AmpThreshold.*ones(size(SlopeThreshold));end if isscalar(smoothwidth),smoothwidth=smoothwidth.*ones(size(SlopeThreshold));end if isscalar(peakgroup),peakgroup=peakgroup.*ones(size(SlopeThreshold));end smoothwidth=round(smoothwidth); peakgroup=round(peakgroup); if smoothwidth>1, d=SegmentedSmooth(deriv(y),smoothwidth,smoothtype); else d=deriv(y); end P=[0 0 0 0 0]; vectorlength=length(y); NumSegs=length(SlopeThreshold); peak=1; for j=2*round(smoothwidth/2)-1:length(y)-smoothwidth-1, Seg=fix(1+NumSegs./(vectorlength./j)); n=round(peakgroup(Seg)/2+1); % [j Seg] if sign(d(j)) > sign (d(j+1)), % Detects zero-crossing if d(j)-d(j+1) > SlopeThreshold(Seg), % if slope of derivative is larger than SlopeThreshold if y(j) > AmpThreshold(Seg), % if height of peak is larger than AmpThreshold xx=zeros(size(peakgroup(Seg)));yy=zeros(size(peakgroup(Seg))); for k=1:peakgroup(Seg), % Create sub-group of points near peak groupindex=j+k-n+2; if groupindex<1, groupindex=1;end if groupindex>vectorlength, groupindex=vectorlength;end % groupindex=groupindex xx(k)=x(groupindex); yy(k)=y(groupindex); end if peakgroup(Seg)>2, [Height,Position,Width]=gaussfit(xx,yy); PeakX=real(Position); % Compute peak position and height of fitted parabola PeakY=real(Height); MeasuredWidth=real(Width); % if the peak is too narrow for least-squares technique to work % well, just use the max value of y in the sub-group of points near peak. else PeakY=max(yy); pindex=val2ind(yy,PeakY); PeakX=xx(pindex(1)); MeasuredWidth=0; end % Construct matrix P. One row for each peak detected, % containing the peak number, peak position (x-value) and % peak height (y-value). If peak measurement fails and % results in NaN, or if the measured peak height is less % than AmpThreshold, skip this peak if isnan(PeakX) || isnan(PeakY) || PeakY<AmpThreshold(Seg), % Skip this peak else % Otherwise count this as a valid peak P(peak,:) = [round(peak) PeakX PeakY MeasuredWidth 1.0646.*PeakY*MeasuredWidth]; peak=peak+1; % Move on to next peak end end end end end DetectionParameters=[SlopeThreshold AmpThreshold smoothwidth peakgroup]; % Remove comment on next two lines a add plotting % plot(x,y) % text(P(:,2),P(:,3),num2str(P(:,1))) % ---------------------------------------------------------------------- function [index,closestval]=val2ind(x,val) % Returns the index and the value of the element of vector x that is closest to val % If more than one element is equally close, returns vectors of indicies and values % Tom O'Haver (toh@umd.edu) October 2006 % Examples: If x=[1 2 4 3 5 9 6 4 5 3 1], then val2ind(x,6)=7 and val2ind(x,5.1)=[5 9] % [indices values]=val2ind(x,3.3) returns indices = [4 10] and values = [3 3] dif=abs(x-val); index=find((dif-min(dif))==0); closestval=x(index); function d=deriv(a) % First derivative of vector using 2-point central difference. % T. C. O'Haver, 1988. n=length(a); d=zeros(size(a)); d(1)=a(2)-a(1); d(n)=a(n)-a(n-1); for j = 2:n-1; d(j)=(a(j+1)-a(j-1)) ./ 2; end function SmoothedSignal=SegmentedSmooth(y,smoothwidths,type,ends) % SegmentedSmooth(y,w,type,ends) divides y into a number of equal-length % segments defined by the length of the vector 'smoothwidths', then % smooths each segment with smooth of type 'type' and width defined by % the elements of vector 'smoothwidths'. % Version 1, November 2016. % The argument "type" determines the smooth type: % If type=1, rectangular (sliding-average or boxcar) % If type=2, triangular (2 passes of sliding-average) % If type=3, pseudo-Gaussian (3 passes of sliding-average) % If type=4, pseudo-Gaussian (4 passes of same sliding-average) % If type=5, multiple-width (4 passes of different sliding-averages) % The argument "ends" controls how the "ends" of the signal % (the first w/2 points and the last w/2 points) are handled. % If ends=0, the ends are zero. (In this mode the elapsed % time is the fastest and is independent of the smooth width). % If ends=1, the ends are smoothed with progressively % smaller smooths the closer to the end. (In this mode the % elapsed time increases with increasing smooth widths). % SegmentedSmooth(y,w,type) smooths with ends=0. % SegmentedSmooth(y,w) smooths with type=1 and ends=0. % % Examples: 3-segment smooth of random white noise, smooth widths of % 2,20, and 200. % x=1:10000;y=randn(size(x)); % plot(x,SegmentedSmooth(y,[2 20 200],3,0)) % % 20-segment smooth, odd smooth widths from 1 to 41: % plot(x,SegmentedSmooth(y,[1:2:41],3,0)) % Copyright (c) 2012, Thomas C. O'Haver if nargin==2, ends=0; type=1; end if nargin==3, ends=0; end ly=length(y); NumSegments=length(smoothwidths); SegLength=round(ly./NumSegments); SmoothSegment=zeros(ly,NumSegments); SmoothedSignal=zeros(1,ly); for Segment=1:NumSegments, SmoothSegment(:,Segment)=fastsmooth(y,smoothwidths(Segment),type,ends); startindex=(1+(Segment-1)*SegLength); endindix=startindex+SegLength-1; if endindix>ly,endindix=ly;end indexrange=startindex:endindix; SmoothedSignal(indexrange)=SmoothSegment(indexrange,Segment); end function SmoothY=fastsmooth(Y,w,type,ends) % fastsmooth(Y,w,type,ends) smooths vector Y with smooth % of width w. Version 3.0, October 2016. % The argument "type" determines the smooth type: % If type=1, rectangular (sliding-average or boxcar) % If type=2, triangular (2 passes of sliding-average) % If type=3, pseudo-Gaussian (3 passes of sliding-average) % If type=4, pseudo-Gaussian (4 passes of same sliding-average) % If type=5, multiple-width (4 passes of different sliding-average) % The argument "ends" controls how the "ends" of the signal % (the first w/2 points and the last w/2 points) are handled. % If ends=0, the ends are zero. (In this mode the elapsed % time is independent of the smooth width). The fastest. % If ends=1, the ends are smoothed with progressively % smaller smooths the closer to the end. (In this mode the % elapsed time increases with increasing smooth widths). % fastsmooth(Y,w,type) smooths with ends=0. % fastsmooth(Y,w) smooths with type=1 and ends=0. % Examples: % fastsmooth([1 1 1 10 10 10 1 1 1 1],3)= [0 1 4 7 10 7 4 1 1 0] % % fastsmooth([1 1 1 10 10 10 1 1 1 1],3,1,1)= [1 1 4 7 10 7 4 1 1 1] % % x=1:100; % y=randn(size(x)); % plot(x,y,x,fastsmooth(y,5,3,1),'r') % xlabel('Blue: white noise. Red: smoothed white noise.') % % Copyright (c) 2012, Thomas C. O'Haver % switch type case 1 SmoothY=sa(Y,w,ends); case 2 SmoothY=sa(sa(Y,w,ends),w,ends); case 3 SmoothY=sa(sa(sa(Y,w,ends),w,ends),w,ends); case 4 SmoothY=sa(sa(sa(sa(Y,w,ends),w,ends),w,ends),w,ends); case 5 SmoothY=sa(sa(sa(sa(Y,round(1.6*w),ends),round(1.4*w),ends),round(1.2*w),ends),w,ends); end function SmoothY=sa(Y,smoothwidth,ends) w=round(smoothwidth); SumPoints=sum(Y(1:w)); s=zeros(size(Y)); halfw=round(w/2); L=length(Y); for k=1:L-w, s(k+halfw-1)=SumPoints; SumPoints=SumPoints-Y(k); SumPoints=SumPoints+Y(k+w); end s(k+halfw)=sum(Y(L-w+1:L)); SmoothY=s./w; % Taper the ends of the signal if ends=1. if ends==1, startpoint=(smoothwidth + 1)/2; SmoothY(1)=(Y(1)+Y(2))./2; for k=2:startpoint, SmoothY(k)=mean(Y(1:(2*k-1))); SmoothY(L-k+1)=mean(Y(L-2*k+2:L)); end SmoothY(L)=(Y(L)+Y(L-1))./2; end % ---------------------------------------------------------------------- function a=rmnan(a) % Removes NaNs and Infs from vectors, replacing with nearest real numbers. % Example: % >> v=[1 2 3 4 Inf 6 7 Inf 9]; % >> rmnan(v) % ans = % 1 2 3 4 4 6 7 7 9 la=length(a); if isnan(a(1)) || isinf(a(1)),a(1)=0;end for point=1:la, if isnan(a(point)) || isinf(a(point)), a(point)=a(point-1); end end function [Height, Position, Width]=gaussfit(x,y) % Converts y-axis to a log scale, fits a parabola % (quadratic) to the (x,ln(y)) data, then calculates % the position, width, and height of the % Gaussian from the three coefficients of the % quadratic fit. This is accurate only if the data have % no baseline offset (that is, trends to zero far off the % peak) and if there are no zeros or negative values in y. % % Example 1: Simplest Gaussian data set % [Height, Position, Width]=gaussfit([1 2 3],[1 2 1]) % returns Height = 2, Position = 2, Width = 2 % % Example 2: best fit to synthetic noisy Gaussian % x=50:150;y=100.*gaussian(x,100,100)+10.*randn(size(x)); % [Height,Position,Width]=gaussfit(x,y) % returns [Height,Position,Width] clustered around 100,100,100. % % Example 3: plots data set as points and best-fit Gaussian as line % x=[1 2 3 4 5];y=[1 2 2.5 2 1]; % [Height,Position,Width]=gaussfit(x,y); % plot(x,y,'o',linspace(0,8),Height.*gaussian(linspace(0,8),Position,Width)) % Copyright (c) 2012, Thomas C. O'Haver % To prevent problems from taking the log of zero or negative values, % make the lowest value of y equal to 1% of the maximum value. maxy=max(y); for p=1:length(y), if y(p)<(maxy/100),y(p)=maxy/100;end end % for p=1:length(y), logyyy=log(abs(y)); [coef,S,MU]=polyfit(x,logyyy,2); c1=coef(3);c2=coef(2);c3=coef(1); % Compute peak position and height or fitted parabola Position=-((MU(2).*c2/(2*c3))-MU(1)); Height=exp(c1-c3*(c2/(2*c3))^2); Width=norm(MU(2).*2.35703/(sqrt(2)*sqrt(-1*c3)));
目前我在c#中只会用x,y坐标参数调用,再附加其他参数,就得不到结果了,其他参数不知道怎么设,都是数学方面的感觉
下面是我的调用
MWArray z5 = ph.autofindpeaks((MWNumericArray)mass, (MWNumericArray)signal);
完全的参数列表是
MWArray z5 = ph.autofindpeaks ((MWNumericArray)mass, (MWNumericArray)signal, SlopeThreshold, AmpThreshold, Smoothwidth, Peakgroup, Smoothtype);
这些参数在说明中有,但是不太懂